友情提示

- 请在使用本仪器前,详细阅读 ZDJ-5B-Y 型自动滴定仪说明书 A 以及 ZDJ-5B 型自动滴定仪说明书。
- 本说明书仅针对永停滴定的相关安装、操作说明,相当部分内容与 ZDJ-5B 自动滴定仪说明书重复。
- 仪器超过一年必须送计量部门或有资格的单位复检,合格 后方可使用。
- 所使用电极的保质期参见电极的使用说明书,超过保质期后,不管是否使用过,其性能都会受到影响,应及时更换。

`

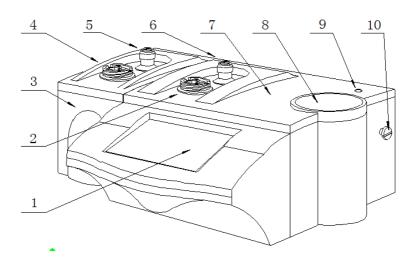
目 录

1	ZDJ-5B-Y 型自动滴定仪的安装	
	1.1 开箱	3
	1.2 仪器结构	3
	1.3 仪器安装	7
	1.3.1 辅滴定单元的安装	7
	1.3.2 滴定管装置及阀安装	9
	1.3.3 电极架及滴定杯安装	10
	1.3.4 安装滴定管装置及阀门	11
	1.3.5 安装电极架及滴定杯	11
	1.3.6 连接输液管	11
	1.3.7 仪器日常使用	12
	1.3.8 打印机连接线的安装	13
	1.3.9 电极的安装	13
	1.3.9.1 永停测量电极的安装	13
	1.3.9.2 其他电极的安装	13
2	ZDJ-5B-Y 型自动滴定仪操作指南	14
	2.1 简介	14
	2.1.1 术语解释	15
	2.1.2 自动滴定仪的特点	16
	2.1.3 自动滴定仪的主要技术性能	18
	2.2 开机和按键	20
	2.3 用户登录和起始界面	20

上海仪电科学仪器股份有限公司产品说明书

2.4 仪器操作	23
2.4.1 清洗、补液	23
2.4.2 设置搅拌器	24
2.4.3 查阅测量单元 2	25
2.4.4 设置滴定管、滴定管系数	26
2.5 滴定	27
2.5.1 滴定开始前的准备	27
2.5.2 开始滴定的几种方法	28
2.5.3 自动滴定方法滴定	28
2.5.3.1 自动滴定方法参数	29
2.5.3.2 开始自动滴定方法滴定	33
2.5.3.3 自动滴定方法结束后的操作	34
2.5.4 手动滴定方法滴定	34
2.5.4.1 手动滴定方法参数	34
2.5.4.2 开始手动滴定方法滴定	35
2.5.4.3 手动滴定方法结束后的操作	35
2.5.5 用户自己创建滴定方法的滴定	36

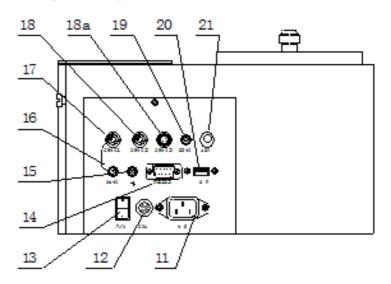
1 ZDJ-5B-Y 型自动滴定仪的安装


1.1 开箱

在滴定仪装运包装箱中可找到以下部件:

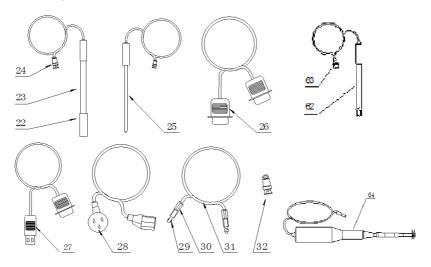
1.	ZDJ-5B-Y 型自动滴定仪	1台
2.	电极支架	1 只
3.	滴定装置阀门	1 套
4.	附件 (以装箱单为准)	1 套
5.	辅滴定单元(根据客户需求选购)	1 套

1.2 仪器结构


1.2.1 仪器正面图

仪器正面示意图(图1)

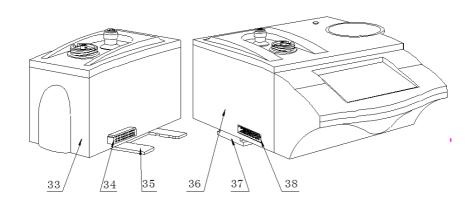
- 1. 触摸显示屏
- 2. 主滴定单元滴定管固定座
- 3. 辅滴定单元
- 4. 辅滴定单元滴定管固定座
- 5. 辅滴定单元阀门转向槽
- 6. 主滴定单元阀门转向槽
- 7. 主机
- 8. 下搅拌器
- 9. 电极架固定孔
- 10. 电极架定位螺钉


1.2.2 仪器后面板

仪器后面示意图 (图 2)

- 11. 电源插座
- 12. 保险丝座
- 13. 电源开关
- 14. RS-232 通讯口
- 15. 接地接线柱
- 16. 参比电极接线柱
- 17. 测量电极 1 插口
- 18. 测量电极 2 插口
- 18. 测量电极 3 插口
- 19. 温度电极插座
- 20. USB 通讯口
- 21. 上搅拌器插口

1.2.3 仪器配件

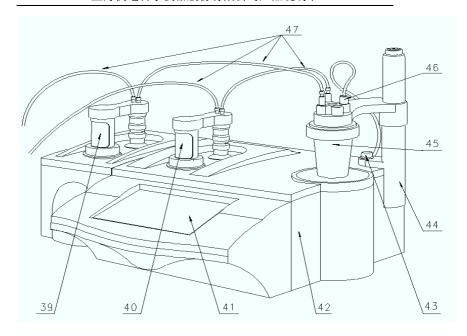

仪器附件示意图(图3)

上海仪电科学仪器股份有限公司产品说明书

- 22. 电极护套
- 23. E-201-C型 pH 复合电极
- 24. Q9 电极插头
- 25. T-818-B-6 型温度电极
- 26. RS-232 打印机连线
- 27. USB 通迅连线
- 28. 国际通用电源线
- 29. 夹管衬套(输液管与螺纹端面密封)
- 30. 夹管螺钉
- 31. 输液管
- 32. Q9 短路插头
- 62. 永停测量电极: DJS-1Cx 型电导电极(光亮)
- 63. 电极插头
- 64. 上搅拌器(选配件)

1.3 仪器安装

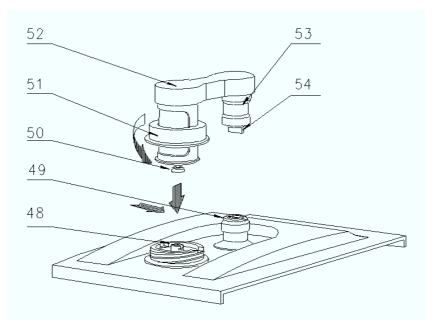
打开包装,取出滴定仪、电极支架以及相关附件。



仪器主机与辅滴定单元示意图(图4)

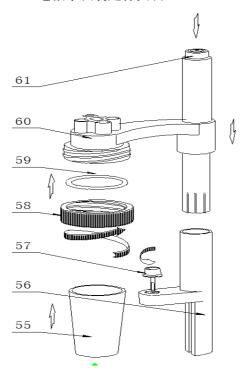
- 33. 辅滴定单元
- 34. 与主机相连的连接口
- 35. 安装固定板
- 36. 主机
- 37. 安装固定座
- 38. 与辅滴定单元相连的连接口

1.3.1 辅滴定单元的安装


将辅滴定单元的安装固定板(35)对准主机上安装固定座(38)并插入安装固定座(38)使辅滴定单元和主机靠紧,并使连接器(34)与(38)接触良好。

滴定仪管道连接示意图(图 5)

- 39. 辅滴定单元的滴定管及阀
- 40. 主机的滴定管及阀
- 41. 显示屏
- 42. 主机
- 43. 电极架固定螺钉
- 44. 电极架
- 45. 滴定杯
- 46. 电极安装口
- 47. 滴定管道


1.3.2 滴定管装置及阀安装

滴定管装置以及阀门安装示意图(图 6)

- 48. 顶杆
- 49. 阀门转杆(安装时上下配合)
- 50. 活塞杆头(安装时要配合)
- 51. 滴定装置紧固螺母
- 52. 阀及滴定管连接板
- 53. 阀门阀体
- 54. 阀门转向凸轴

1.3.3 电极架及滴定杯安装

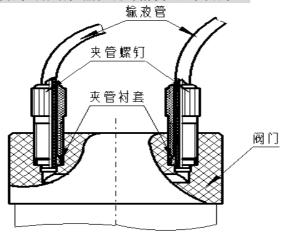
电极架以及滴定杯安装示意图(图7)

- 55. 溶液杯
- 56. 电极架固定座
- 57. 电极架固定螺钉
- 58. 溶液杯固定螺帽
- 59. 硅橡胶圈
- 60. 电极架
- 61. 按钮(按下时可调节高度)

1.3.4 安装滴定管装置及阀门

将主机(7)放在试验台上,按(图6)安装滴定管及阀门,安装时注意活塞杆头与主机上顶杆的倒T形槽相配合、由于本滴定装置与阀门是连为一体的因此还要兼顾阀门转向凸轴(54)与(图1)中主机上阀门转向槽(6)相扣,然后向下按在确认左右没有转动时旋紧滴定装置紧固螺母(51)即可。

1.3.5 安装电极架及滴定杯


先按(图1)与(图7)所示,把电极架固定座(56)的底部内侧T形槽对准主机右侧面的电极架定位螺钉(10)按下,然后拧紧固定螺钉(43)固定好电极架,平常在检测时和更换被滴溶液时按下按钮(61)可调节滴定杯的高度和左右角度;再按(图7)所示将硅橡胶圈(59)放在溶液杯固定螺帽(58)内圈并旋在电极架(60)的外螺母上2至3圈,在溶液杯(55)中放入搅拌珠从下往上至顶部然后拧紧固定螺帽(58)。

1.3.6 连接输液管

按(图 5)所示,滴定管装置及阀门上有 2 个螺纹孔(面对主机);左边的一个为滴定管进液口;右面的一个为滴定管输出口。然后按图所示分别 1. 将输液管(31)长的一根(只有单个夹管螺钉)与阀门上方左面螺纹孔连接另一头插入贮液瓶; 2. 再将输液管短的一根(两头都有夹管螺钉的),一头连接阀门上方右面螺纹孔;另一头与出厂附件中的滴定毛细管连接好,连接之后按图插入电极架的一个小孔中。 3. 将输液管

(31) 放入贮液瓶的底部。

注意: 先检查阀门的螺孔内是否有异物,再将夹管衬套(29)夹管螺钉(30)与阀门的螺孔拼紧,不得有液体及气体泄漏现象,否则会影响仪器检测的精度。如图所示。

输液管连接示意图(图8)

1.3.7 仪器的日常使用

仪器在滴定时,要更换溶液,就要装拆溶液杯,如上图(示图VII)所示,先将紧定螺钉(58)放松,将整个溶液杯装置抬高并旋转至主机外侧位子,手托住溶液杯(55),旋转放松溶液杯固定螺帽(58),拿出溶液杯(55),倒掉溶液杯中的溶液,清洗数次,在溶液杯(55)中倒入被测溶液,然后将溶液杯(55)按(b安装电极架及滴定杯)安装好,拧紧大螺帽(58),按下按钮将溶液杯装置下移并转至下搅拌器(8)的中心,使

溶液杯(55)杯底接触搅拌器(8)表面,最后放松按钮(61)。 注意:搅拌珠也必须一起清洗,同时搅拌珠必须放在溶液杯 (55)的杯底。

1.3.8 打印机连接线的安装

将串行打印机连线或 RS-232 连线 (26) 插入后面板的 RS232 插座 (14) 内;将国际通用电源线 (28) 插入电源插座 (11) 内;拧下保险丝座 (12) 上的保险丝盖,装入备件中的 保险丝Φ5×20 (3A),然后拧紧保险丝盖(仪器出厂前已装好保险丝)。

1.3.9 电极的安装

1.3.9.1 永停测量电极的安装

通常永停测量使用 DJS-1Cx 型光亮电导电极。使用前应用蒸馏水反复清洗电极,将电极插头插入仪器后面板的测量电极 3(18a)内,即可正常使用(插时注意方向)。

1.3.9.2 其他电极安装

参见 ZD.J-5B 自动滴定仪说明书。

2 ZDJ-5B-Y型自动滴定仪操作指南

2.1 简介

本滴定仪包含有电位测量单元、永停测量单元,使用前,请确保已阅读 ZDJ-5B 型自动滴定仪说明书以及 ZDJ-5B-Y 型自动滴定仪说明书的安装指南和操作指南。

使用滴定仪时注意的问题有:

- 必须有良好的接地。
- 防止腐蚀性气体侵入。
- 仪器的接口必须保持清洁、干燥,切忌与酸、碱、盐溶液接触。
- 仪器可供长期稳定使用。测试样品后,所用电极应浸放在蒸馏水中。
- 滴定仪属于高精度的测量仪器,为了避免仪器的高阻器件 受到损坏,当仪器不连接测量电极时,应将随机提供的 Q9短路插头插入测量电极插座上。当仪器连接电极时, 必须将短路插头放置在干燥、干净的环境,防止短路插头 受潮,再次使用时影响仪器性能,甚至损坏仪器。
- 当滴定仪长时间不使用时,用户必须用蒸馏水将滴定管清洗干净,特别是会产生沉淀或结晶的滴定剂(如 AgNO₃),在使用完毕后应及时清洗,以免损坏阀门,给您带来不必要的损失。
- 在进行永停滴定时,DJS-1C型电导电极(光亮)可在含少量 FeCl₃的 HNO₃ 溶液中煮沸半小时进行活化。

2.1.1 术语解释

- 动态滴定:无需预先知道滴定终点,仪器在整个滴定过程 中自动寻找滴定终点(电位变化率最大的点)。
- 预设终点滴定: 仪器滴定到预先设定的终点电位 mV(或 pH)值时,自动停止滴定。
- pH斜率:每变化1pH值产生电位的变化量,通常用 mV/pH 或%表示。
- pH的 E0: 又称"零电位",通常是指 pH为7时的电位值。
- pH 的一点标定:用一种 pH 缓冲溶液进行的校准。
- pH 的多点标定:用两种以上 pH 缓冲溶液进行的校准。

2.1.2 ZDJ-5B-Y 型自动滴定仪的特点

ZDJ-5B-Y型自动滴定仪是在原来ZDJ-5型的基础上推出的新型产品,仪器主要有以下特点:

- 仪器采用全新微处理器技术使用 7°TFT 触摸屏, 达 65k 色; 支持简单的滑动操作。
- 仪器采用阀门滴定管一体化设计,用户可以直接更换,减小了不同滴定时采用不同溶液的相互干扰问题,仪器支持 10mL、20mL 多种滴定管。
- 仪器对传动系统进行了改进,大大缩小了仪器的体积,有效地降低了仪器的噪声。搅拌系统采用 PWM 调制技术,软件调速。
- 仪器支持上搅拌器。
- 仪器采用抗高氯酸腐蚀的材料,可进行非水滴定。仪器支持双高阻输入。
- 仪器可增配一个滴定单元,实现双管组合滴定,满足客户特殊要求。
- 仪器样品列表功能,支持我公司生产的自动进样器,可以实现多样品自动滴定,满足用户批量测试的需求;使用进样器,仪器也支持 pH 电极的自动标定。
- 仪器支持多测量单元,如电位测量单元、永停测量单元、电导测量单元、光度测量单元、温度测量单元等; 仪器以电位测量单元作为默认配置,用户还可以根据需要增加一个测量单元,如永停、电导等。
- 仪器以滴定方法管理所有滴定,支持滴定方法的查阅、 拷贝、编辑、新建等功能;所有滴定方法包含使用的

设备,如测量单元、滴定单元、搅拌器参数,测量参数、测量结果参数等。

- 对应不同测量单元,具有不同测量方法。对应电位测量 单元仪器支持包括动态滴定方法、预设终点滴定方法、 等量滴定方法、恒滴定方法、手动滴定方法,以及随机 提供的 2 种应用。
- 仪器具有良好操作界面,使用方便,能实时显示有关测 试方法、滴定曲线、测量结果。
- 仪器按照过程控制整个滴定,允许用户编辑滴定过程, 创建特殊的滴定方法,满足探究性的应用。
- 滴定结束后,用户可直接生成专用滴定方法,扩大了仪器使用范围。仪器选用不同电极可进行不同的滴定,包括酸碱滴定、氧化还原滴定、沉淀滴定、络合滴定、非水滴定等多种滴定和 pH 测量。
- 仪器支持 U 盘,允许读写滴定方法、滴定结果。
- 支持滴定剂管理,最多支持5种滴定剂;
- 支持公式编辑器,允许用户自定义结果计算公式,包括数字、+-*/()、系统变量、用户自定义变量,最大50个字符长度。
- 支持 USB、RS232 连接 PC,配合专门开发的配套滴定 软件控制。在计算机上可即时显示滴定曲线及其一阶、 二阶导数。方便滴定模式的编辑和修改,并可进行结果 的统计等。
- 仪器具有断电保护功能在仪器使用完毕关机后或非正 常断电情况下,仪器内部贮存的测量数据和设置的参数

不会丢失。

- 仪器支持存贮 100 套滴定方法。
- 仪器支持 GLP 规范,可以存贮 200 套滴定结果。
- 仪器具有统计功能,允许用户将滴定结果进行统计、查 阅、分析、比较。
- 支持电极标定功能,具有标液组管理功能,自动识别 GB、DIN、NIST 等多种 pH 缓冲剂,最多 3 点标定。
- 仪器支持多种途径开始滴定,包括从起始界面、导航式 滴定、快捷方式、滴定方法管理、样品列表管理等。
- 允许用户创建快捷方式,可以将经常使用的功能、滴定 方法创建快捷方式,直接启动。
- 支持设备管理,允许单独调试、控制。管理每个设备。
- 仪器编写有部分操作指导,简单、扼要地提示仪器的常规操作说明,方便用户使用。
- 仪器支持用户管理,最大支持8个用户,支持密码管理。
- 支持中英文语言。
- 仪器支持固件升级功能,多种升级途径,包括用 U 盘直接升级;允许仪器功能扩展和个性化要求。

2.1.3 主要技术性能(永停部分)

- 1 测量范围
 - 极化电压:100mV、50mV、30mV;
 - 极化电流范围: (0~199.9) μ A、(0~19.99) μ A、(0~1.999) μ A、(0~0.199) μ A;

2 滴定管容量允差

10ml 滴定管: ±0.025ml;

20m1 滴定管: ±0.035m1。

- 3 滴定分析的重复性: 0.2%。
- 4 仪器控制滴定灵敏度: ±5% FS。
- 5 极化电流检测误差: ±2.5% FS。
- 6 极化电压误差: ±10mV。
- 7 仪器正常工作条件

环境温度: (5.0~35.0) ℃;

相对湿度:不大于80%:

供电电源: (220±22)V, 频率(50±1)Hz;

除地磁场外, 周围无电磁场干扰。

8 外形尺寸

主滴定装置(mm): 340×400×400(长×宽×高);

辅滴定装置(mm): 200×110×230(长×宽×高)。

9 重量(kg):约10。

2.2 开机和按键

打开电源开关,仪器显示登录界面,要求用户登录。 登录后,仪器进行自检,稍等,进入起始状态。

本仪器使用触摸屏作为操作、控制设备,随机将配置触摸笔,用户触摸按键时可以适当延长一点时间以增加点击的准确性,如果偏离位置确实较大,应该进行触摸屏的重新校正,以免影响使用效果。

仪器默认以蓝色高亮条表示选中,浅色表示无效的选项, 点击高亮条可以执行相应操作。

2.3 用户登录和起始界面

仪器最多支持8个用户,并支持密码管理。默认第一个用户为Admini,用户无法修改。只有Admini用户登录时才有权创建用户、删除用户,其他用户无法操作。

警告用户: 1、仪器出厂时, Admini 的密码没有设置, 即为空白, 用户直接按确认键登录即可; 2、如果用户设置了密码, 请妥然保管好自己的密码, 免得丢失导致无法正常登录, 影响仪器的使用, 给您带来不必要的麻烦。

登录成功后,仪器开始检查外接设备,然后进入起始状态,将来所有的操作都从此开始,完成相应工作后返回到这里,我们称为起始状态。

起始状态最多包含 5 个显示界面,分别为: 电位单元监控 界面、永停测量单元监控界面、上次滴定结果界面、系统功能 菜单界面、用户自定义滴定方法界面。点击下方标记可以切换

显示页面。

如果仪器没有安装第二测量单元,则不会显示第二测量单元界面。

仪器起始状态显示示意图(10)

电位单元监控界面显示当前实际测量的信号值,包括电位、温度、pH值以及当前测量的通道号。在此界面下,可以完成清洗、补液、搅拌、重复上次滴定、开始滴定等工作。点击测量窗口或者"查阅"标记可以查阅上次 pH 的标定结果、重新标定电极。

第二测量单元监控界面显示当前的极化电流,以及当前灵 敏度、极化电压值。

系统功能菜单界面显示全部系统功能,包括补液、清洗、 设置搅拌器、重复上次滴定、开始新滴定、滴定方法管理、样 品列表管理、查阅上次滴定结果、查阅存贮滴定结果、滴定结 果统计、设备管理、滴定剂管理。系统设置、操作指导等。

对应绝大部分用户而言,可能只需要测量某一类样品的几个参数,即用到 1~2 个滴定方法就可以了,为了方便使用,仪器允许用户直接将最常用的滴定方法创建一个快捷方式到自定义界面,以后可以直接调用。

2.4 仪器操作

2.4.1 清洗、补液

在仪器起始状态的电位监控界面点击"清洗"(或者系统菜单页),即可进入清洗功能模块,显示如图。

清洗包括滴定单元号,清洗速度、清洗次数三个选项。如果仪器连接滴定单元 2,则滴定单元号可选。用户设置清洗速度(通常为快速)、清洗次数(最大 99 次)后,点击"清洗"按键即可开始清洗,清洗过程用户可以随时终止。按"结束"键返回起始状态。

同样,在仪器起始状态的电位监控界面点击"补液"(或者系统菜单页)即可进入补液模块,完成补液操作。

仪器清洗操作显示示意图(11)

注意: 1、每次滴定结束, 仪器会自动补液。2、在"设备管理"中也可实现清洗、补液功能。

2.4.2 设置搅拌器

搅拌器是滴定必备的设备,通常每次滴定都需要搅拌器,有些滴定可能需要严格的搅拌速度,否则将影响测量结果,因此有必要设置搅拌器的速度值,每个滴定方法包含有搅拌器控制,除非用户通过编辑滴定过程特意去除搅拌器功能!

本仪器支持两种搅拌器,上搅拌器和下搅拌器。仪器将每种搅拌器的速度分成 45 档,即最大搅拌速度为 45。仪器默认安装有下搅拌器,如果用户有特殊需求,可以选购上搅拌器,请用户按照实际连接的搅拌器类型设置,并调试搅拌器速度。有几个途径可以设置搅拌器。

1、 在查阅某个滴定方法的参数、过程中设置

选择某个滴定方法,点击"查阅参数"或者"查阅过程"按键,进入相应查阅模块,然后选择有关搅拌器项即可设置搅拌器类型和搅拌器速度值。

2、搅拌器单独设置

在仪器起始状态的电位监控界面点击"搅拌"(或者系统菜单页点击"设置搅拌器")即可设置搅拌器,调试搅拌器,如图,

设置搅拌器示意图(12)

图中包含搅拌器类型、搅拌器速度,调节速度的按键和速度指示条、开关键等,用户可以点击搅拌器速度设置速度值,或者点击速度指示条、"++"、"—"键调整搅拌器速度,仪器将直接打开搅拌器,将有溶液的烧杯(带搅拌棒)放置在搅拌器上面将看到直接的搅拌效果。

仪器有"当前设置对所有方法有效"的选项框, "No" 表示设置的搅拌参数对所有滴定方法不起作用, "Yes"表示 所有滴定方法将采用当前设置的搅拌参数。

3、设备管理中设置搅拌器

进入设备管理模块,选择搅拌器,即可设置搅拌器的类型、速度。

2.4.3 查阅测量单元.2

在起始状态下选择菜单"查阅测量单元2"或者点击测量单元2显示图标,即可进入,如图。仪器将显示当前的极化电压值、极化电流、以及用户自己设定的显示灵敏度值。

查阅测量单元2示意图(图12)

灵敏度请参考自动滴定方法里面灵敏度参数的说明。

2.4.4 设置滴定管、滴定管系数

本仪器默认安装有一个滴定单元(容量滴定单元),即滴定单元 1,用户还可以根据需要选购一个滴定单元,组合成复杂的滴定方法,满足复杂滴定需要。每套滴定单元有一个滴定管。我公司开发的新型滴定管,将阀门滴定管一体化设计,用户可以直接更换,减小了不同滴定时采用不同溶液的相互干扰问题,用户可以采购多个滴定管完成不同的滴定需求。本仪器支持多种容量的滴定管,包括: 10mL 滴定管、20mL 滴定管。

通常每个滴定方法都包含有滴定单元的信息,包括滴定管 类型、滴定管系数,用户必须正确设置,才能保证滴定的正确 进行,否则将直接影响添加体积的多少,进而影响滴定结果。

选择某个滴定方法,选择"查阅参数》设备信息》滴定单

元",即可设置滴定单元的类型、滴定管系数。

注意:1、滴定管系数以百分数表示,例如:滴定管系数 99.85%, 应该输入 99.85; 2、每个滴定方法都有滴定单元,因此第一次使用前或者更换滴定管后需要设置新的滴定管系数; 3、对应用户创建的多管路滴定方法,仪器会同步弹出滴定单元 2的信息,用户同样需要正确设置。

2.5 滴定

2.5.1 滴定开始前的准备

用户应该比较了解所需测量物质(样品)的性质、属性; 常规测试的方法;了解滴定仪基本的操作、应用;正式使用前 必须仔细检查连接的管道是否正确、有否漏液、冒泡等现象, 可以用普通的自来水或者其它溶液(特殊要求的除外)代替测 试,多清洗几次,查看仪器的运行情况。

如果配套使用我公司开发的自动样品进样器,则需要检测进样器是否能正常工作,管道是否有脱落、排液口是否通畅。可以用进样器自带的按键调试,或者连接本滴定仪后联机调试。

如果有双管路滴定需求的用户,配套使用我公司的另一套 滴定单元,则可以按滴定单元1的方法,执行多次清洗、补液 工作,保证滴定单元的正常;同样,在正式滴定开始前,应检 测搅拌器是否正常工作;

如果用户是第一次使用本滴定仪,或者对样品、滴定结果不太确定,或者是研究性质的需求,建议用户使用自动滴定方

法或者手动滴定方法,用默认参数滴定,查看滴定情况,再做进一步处理;如果是熟练的用户,对样品、测试方法很熟悉,则可以选择恰当的滴定方法直接进行测量,滴定结束后,再做进一步处理;

仪器正常后,用户准备自己的样品、滴定剂,即可开始滴 定。

2.5.2 开始滴定的几种途径

本仪器支持多种途径完成一次滴定,包括:

- 从"重复上次滴定"开始滴定;
- 从"开始新滴定"开始滴定;
- 从"滴定方法管理"开始滴定:
- 从"样品列表管理"开始滴定;
- 从"快捷方式"开始滴定。

2.5.3 自动滴定方法滴定

自动滴定方法是永停仪器的主要滴定方法,仪器要求用户 事先设置终点电流、预控点电流值,仪器将自动按照设置的条件,控制并完成整个滴定。

以从"滴定方法管理"开始滴定说明操作过程。在起始状态系统菜单页,点击"滴定方法管理"进入滴定方法管理,再点击永停单元,仪器自动列出存贮的永停滴定方法,至少包括自动滴定、手动滴定方法两种。选择"Auto Titration",点击"查阅参数"可查看自动滴定的控制参数,点击"查阅过程"可查看自动滴定的整个控制过程。

滴定方法管理显示示意图(图13)

2.5.3.1 自动滴定方法参数

自动滴定方法的参数主要包括,极化电压、预设终点、预控点、终点延时时间、灵敏度、预加体积、最小添加体积、最大添加体积、测量单元、搅拌器、样品、滴定剂,每个参数的设置可能影响测量结果。

注意: 所有使用自动滴定方法进行滴定的几种途径, 其参数的设置、意义参考下面定义。

■ 极化电压

永停滴定需要极化电压,分别有 30mV、50mV、100mV 等 3 种极化电压,用户可按实际需要选择。测量时使用的极化电压 越大,反应越快。

■ 灵敏度

灵敏度用以指示当前测量分辨率,分别有*.001、*.01、*0.10、*1.00、*10.0等5档,分别表示指示表读数× 10^{-9} A、指示表读数× 10^{-6} A、指示表读数× 10^{-6} A、指示表读数× 10^{-6} A、指示表读数× 10^{-6} A、用户可按实际需要选择。譬如,本次滴定的电流范围为 $0\sim10$ uA,则选择*0.10档比较合适。用户可参考下表选择合适的灵敏度。

反应电流(A)	灵敏度	
$0^{\sim}100\times10^{-5}$	*10.0	
$0^{\sim}100\times10^{-6}$	*1.00	
$0^{\sim}100\times10^{-7}$	*0.10	
$0^{\sim}100\times10^{-8}$	*0.01	
$0^{\sim}100\times10^{-9}$	*. 001	

电极反应电流与灵敏度关系表

■ 预设终点

本参数用于控制滴定的终点值。在滴定过程中,当测量电流值超过设置的终点电流时,仪器即停止滴定,开始终点判断。

实际设置的终点电流值为当前的设置值×当前灵敏度。 譬如:设置终点为 60,灵敏度为×1.00,那么实际的终点电流为 60×1.00 uA=60uA,如果灵敏度为×0.10,那么实际的终点电流为 60×0.10 uA=6.0uA。

■ 预控点

本参数是用于控制滴定过程中滴定剂的添加速度。在滴定过程中,当测量电流值超过预控点电流时,仪器即开始慢速滴定。

实际设置的预控点电流值为当前的设置值×当前灵敏度。譬如:设置为 40,灵敏度为×1.00,那么实际的慢滴电流将为 40×1.00uA。

■ 终点延时时间

延时时间参数是指滴定到了设置的终点以后开始的延时。一般地,在终点附近会有电流的来回波动,设置一定的延时时间可以得到比较正确的结果。仪器判断到滴定已到用户设定的终点时,会控制滴定模块暂停下来,此时延时即开始,如果在延时没有结束之前测量电流又回落到设定的终点时,仪器则会继续滴定下去,直至滴定过终点并延时结束为止。

■ 预加体积量

对应某些滴定,如果用户知道滴定终点大概消耗体积量的话,则可以使用本参数加快滴定速度。本参数控制滴定开始时第一次自动添加的体积量。

■ 最小添加体积

即最小滴定量,对应某些特殊的滴定,或者需要精度滴定时,用户需要设置此参数。本参数控制滴定过程中每一次添加的体积不小于设定的体积量。该参数设置数值大,滴定速度快,整个滴定时间短,但可能会影响滴定精度;反之设置数值小时,其滴定速度慢,滴定时间长,但精度可能较高。本仪器默认参数为 0.02ml。

■ 最大添加体积(结束体积)

此参数是为了保证由于过量添加而发生溢出等异常情况,从而导致仪器损坏而对您造成不必要的损失而设计的,您最好设置此参数。仪器在滴定过程中,会自动判断总的添加体积,一旦添加过设定的最大添加体积量时,仪器将暂停滴定,并提示用户是否真正结束滴定,用户按实际需要选择继续滴定或结束滴定即可。

■ 测量单元 表示本滴定方法使用的测量单元名称、类型。

■ 搅拌器

设置本滴定方法使用的搅拌器类型、速度值;对应某些滴定,可能用户需要不同的搅拌速度来调节滴定的化学反应速度。用户可以按照实际需要设置此参数。滴定开始时,仪器会自动按此速度搅拌。

■ 滴定单元

设置本滴定方法使用的滴定单元类型、滴定管类型、滴定 管系数。第一次使用本方法滴定时或者更换滴定管后,必须重 新设置滴定管类型、滴定管系数值。

■ 样品信息

设置样品的信息,包括样品名称、样品量。如果用户事先知道样品的体积量,则可以设置此参数。

■ 滴定剂信息

在正式滴定开始前,用户事先应由滴定剂管理功能创建相应滴定剂,详细请参见滴定剂章节。

滴定剂创建后,在滴定方法中选择使用某个滴定剂即可。

其相关的滴定剂参数将自动包含进去。如果最后的滴定结果计算与滴定剂相关,则更应该引起注意,否则将导致结果错误等情况。

2.5.3.2 开始自动滴定方法滴定

所有参数设置正确后,最后检查连接的管道、滴定剂、样品情况,可以按照实际需要先清洗几次滴定管(一般清洗 3次),确认无误后可以开始滴定(可以用前面描述的几种途径启动滴定)。滴定过程如图,分别显示当前滴定方法的名称,当前时间、滴定类型、滴定分析电位与添加体积的曲线和一次微分曲线、当前测量数据、添加总体积、滴定结果、样品数量、当前样品号,样品名称,总滴定分析时间、滴定过程提示框、滴定单元状态、按键等。

在滴定过程中,仪器自动按照用户编写的滴定过程,一个过程一个过程的执行,滴定过程提示框将动态显示滴定过程。包括自动进行采样、溶液的添加、添加量的计算、终点判断等,当仪器找到某个滴定终点后,会鸣叫三声,提醒用户(如果用户设置提示音关闭,则不再鸣叫提醒),并显示出终点对应的体积值。

在整个滴定过程中,用户随时可按"终止"键,终止滴定。 终止滴定后,仪器也自动进入查阅滴定结果界面。

如果仪器发现已添加过用户所设定的最大添加体积(结束体积),则仪器将自动提示用户,是否继续,用户可按实际需要选择终止滴定或继续滴定。

仪器设置有暂停功能。在滴定过程中,如果用户有事需要 处理,或者特殊的滴定进行到某个阶段时,必须将样品再处理, 此时用户可以利用此功能实现这个目的。按"暂停"键暂停仪器的执行,等处理完成后,按继续键执行后面的过程。

滴定过程显示示意图(图 14)

2.5.3.3 自动滴定方法结束后的操作

滴定结束后,仪器会控制滴定仪自动完成补液、关闭搅拌器等,然后进入查阅滴定结果状态,详细参见查阅滴定结果章 节。

2.5.4 手动滴定方法滴定

手动滴定方法是完全由用户自己手动控制添加、添加后自己判断电流值是否稳定并自己决定是否再次添加的用户可以参与的一种滴定方法,适合未知、不确定样品的研究、测定。

2.5.4.1 手动滴定方法参数

手动滴定模式包括以下控制参数:灵敏度、极化电压、预加体积、下次添加体积、添加次数、最大添加体积、测量单元、

搅拌器、样品、滴定剂等。

注意: 所有使用手动滴定方法进行滴定的几种途径, 其参数的设置、意义参考下面定义。

■ 灵敏度 参见自动滴定灵敏度参数章节。

■ 极化电压 参见自动滴定极化电极章节。

■ 预加体积量 同自动滴定预加体积量参数;

■ 下次添加体积 本参数控制用户手动滴定时的下次添加体积,用户也可以在滴定开始后修改。

■ 添加次数 可设定的"下次添加体积"的添加次数, 可在按一次键的情况下,自动完成多次相同体积量的添加,用户也可以在每次滴定完成后修改。最大为20次;

■ 测量单元 同自动滴定测量单元参数;

■ 搅拌器 同自动滴定搅拌器参数:

■ 滴定单元 同自动滴定滴定单元参数:

■ 样品信息 同自动滴定样品信息参数;

■ 滴定剂信息 同自动滴定滴定剂参数;

2.5.4.2 开始手动滴定方法滴定

所有参数设置正确后,最后检查连接的管道、滴定剂、样品情况,可以按照实际需要先清洗几次滴定管,确认无误后可以开始滴定(可以用前面描述的几种途径启动滴定)。

仪器自动添加预加体积后,将由用户自己判断测量的电流 值是否平衡,决定下一次的添加量、添加时间,添加次数等, 适合研究、探索未知样品。因此,手动滴定方法必须由用户手 动终止滴定。

2.5.4.3 手动滴定方法滴定结束后的操作

手动滴定方法必须由用户手动终止滴定。滴定结束后,仪 器会控制滴定仪自动完成补液、关闭搅拌器等,然后进入查阅 滴定结果状态,详细参见查阅滴定结果章节。

2.5.5 用户自己创建滴定方法的滴定

用户首先参考前面提到的步骤,用仪器随机提供的多种滴定方法,通过修改参数、编辑滴定过程,重复测试,研究探索出适合自己样品测试的方法、参数,创建属于自己样品的滴定方法,包括多管路滴定方法、自动进样器支持的方法等,完成后,即可开始正常滴定。